Decoupled Compressed Cache

نویسندگان

  • Somayeh Sardashti
  • David A. Wood
چکیده

In multicore processor systems, last-level caches (LLCs) play a crucial role in reducing system energy by i) filtering out expensive accesses to main memory and ii) reducing the time spent executing in high-power states. Cache compression can increase effective cache capacity and reduce misses, improve performance, and potentially reduce system energy. However, previous compressed cache designs have demonstrated only limited benefits due to internal fragmentation and limited tags. In this paper, we propose the Decoupled Compressed Cache (DCC), which exploits spatial locality to improve both the performance and energy-efficiency of cache compression. DCC uses decoupled super-blocks and non-contiguous sub-block allocation to decrease tag overhead without increasing internal fragmentation. Non-contiguous sub-blocks also eliminate the need for energy-expensive re-compaction when a block’s size changes. Compared to earlier compressed caches, DCC increases normalized effective capacity to a maximum of 4 and an average of 2.2 for a wide range of workloads. A further optimized Co-DCC (Co-Compacted DCC) design improves the average normalized effective capacity to 2.6 by co-compacting the compressed blocks in a super-block. Our simulations show that DCC nearly doubles the benefits of previous compressed caches with similar area overhead. We also demonstrate a practical DCC design based on a recent commercial LLC design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Compression for Energy-Optimized Memory Hierarchies

In multicore processor systems, last-level caches (LLCs) play a crucial role in reducing system energy by i) filtering out expensive accesses to main memory and ii) reducing the time spent executing in high-power states. Increasing the LLC size can improve system performance and energy by reducing memory accesses, but at the cost of high area and power overheads. In this dissertation, I explore...

متن کامل

Exploiting Spatial Locality for Energy-Optimized Compressed Caching

Last-level caches (LLCs) play a crucial role in reducing multicore system energy by filtering out expensive accesses to main memory. Cache compression can increase effective LLC capacity and reduce misses. However, previous designs limit compression benefits caused by internal fragmentation, limited tags, and energy-expensive recompaction when a block’s size changes. In this work, we propose de...

متن کامل

Decoupled Sectored Caches

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for crating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract Maintaining a low tag array size is a major issue in many cache d...

متن کامل

A Space-Efficient On-Chip Compressed Cache Organization for High Performance Computing

In order to alleviate the ever-increasing processor-memory performance gap of high-end parallel computers, on-chip compressed caches have been developed that can reduce the cache miss count and off-chip memory traffic by storing and transferring cache lines in a compressed form. However, we observed that their performance gain is often limited due to their use of the coarse-grained compressed c...

متن کامل

A Dynamically Partitionable Compressed Cache

The effective size of an L2 cache can be increased by using a dictionary-based compression scheme. Naive application of this idea performs poorly since the data values in a cache greatly vary in their “compressibility.” The novelty of this paper is a scheme that dynamically partitions the cache into sections of different compressibilities. While compression is often researched in the context of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013